On the subset sum problem over finite fields
نویسندگان
چکیده
Abstract. The subset sum problem over finite fields is a well-known NPcomplete problem. It arises naturally from decoding generalized Reed-Solomon codes. In this paper, we study the number of solutions of the subset sum problem from a mathematical point of view. In several interesting cases, we obtain explicit or asymptotic formulas for the solution number. As a consequence, we obtain some results on the decoding problem of Reed-Solomon codes.
منابع مشابه
An asymptotic formula for counting subset sums over subgroups of finite fields
Let Fq be the finite field of q elements. Let H ⊆ Fq be a multiplicative subgroup. For a positive integer k and element b ∈ Fq, we give a sharp estimate for the number of k-element subsets of H which sum to b.
متن کاملClassical Wavelet Transforms over Finite Fields
This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...
متن کاملClassical wavelet systems over finite fields
This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...
متن کاملAverages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture
We prove a point-wise and average bound for the number of incidences between points and hyper-planes in vector spaces over finite fields. While our estimates are, in general, sharp, we observe an improvement for product sets and sets contained in a sphere. We use these incidence bounds to obtain significant improvements on the arithmetic problem of covering Fq, the finite field with q elements,...
متن کاملDeep holes in Reed-Solomon codes based on Dickson polynomials
For an [n, k] Reed-Solomon code C, it can be shown that any received word r lies a distance at most n − k from C, denoted d(r, C) ≤ n − k. Any word r meeting the equality is called a deep hole. Guruswami and Vardy (2005) showed that for a specific class of codes, determining whether or not a word is a deep hole is NP-hard. They suggested passingly that it may be easier when the evaluation set o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Finite Fields and Their Applications
دوره 14 شماره
صفحات -
تاریخ انتشار 2008